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Abstract - The usefulness of plate theories resides in that they reduce complicated three-dimensional problems
to simpler ones in two dimensions without compromising the essential information needed in the study of the
phenomenon of bending. In this paper, problems with mixed boundary data are solved in a distributional context.
Such results are necessary since they form the first stage in the study of inverse problems for this type of mechanical
structures, which, in turn, play an important role in the non-destructive testing of materials.

1. INTRODUCTION

The importance of theories of elastic plates is twofold: they simplify the mathematical model by reducing it
from three to two dimensions, and they focus attention on the mechanical process of bending by disregarding less
important factors.

Below, we investigate the dynamic bending of a thin elastic plate subjected to external forces and moments
and internal heat sources, and to homogeneous initial conditions and nonhomogeneous mixed boundary conditions.
The model used is that of plates with transverse shear deformation, proposed in [1] and generalized to thermoelastic
plates in [2]. The initial-boundary value problems are considered variationally, in spaces of distributions, and
solved by means of the Laplace transformation technique. It is shown that the model has a unique weak solution
that depends continuously on the data. The model without thermal effects was studied in [3]-[7].

The results of the direct problem are very important because they have direct bearing on the solution of the
corresponding inverse problem. The latter, which plays an important role in the non-destructive testing of materials,
will be investigated separately.

2. THE MATHEMATICAL PROBLEM
Suppose that a homogeneous and isotropic elastic material occupies agegienhg /2, ho/2] C R3, S C R2.
The displacement vector at andt > 0 is v(2',t) = (vi(2/,t),v2(2',t),v3(2',t))T, where the superscript
denotes matrix transposition. The temperature in the platerist). Letz’ = (z,z3), x = (v1,72) € S. In[1] it
is assumed that

v(a,t) = (z3uy(z,t), z3us(z, 1), us(x,t))T.

When thermal effects intervene, the “averaged” temperature across thickness [2]

1 ho/2 h2
’I,L4(37,t) = h2h0 / 3339(]}7373,1)) d.ﬁg, h2 = 1—;’
—h0/2

is also considered. Thdi(x,t) = (u(z,t)T, us(z, )T, u(z, t) = (ui(z,t), us(z,t), uz(z,t))T, satisfies
BooU (x,t) + B1oyU (x,t) + AU (2,t) = Q(z,t), (2,t) € G =8 x (0,00), (1)

whereB, = diag{ph?, ph?, p,0}, 9; = 0/t, p > 0 is the constant density of the material,

0 0 0 0 h2~9;
0 0 O 0 A h2~0
Bl = 5 A = ,7 ? 9
0 0 0 0 0
ndy ndy 0 7! 0 0 O —A
—h2pA — 2N+ p)d? + u —h2(\ + )01 0, 1oy
A= —h2(X + )10 —P2pA = WA+ )05+ pda |,
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0o = 0/0z4, a0 = 1,2, 1, 5, andy are positive physical constangsandu are the Laré coefficients of the material
satisfying\ + p > 0, 4 > 0, andQ(z,t) = (q(x, )T, qu(z,t))T, whereq(x,t) = (q1(x,t), g2 (2, 1), q3(x, 1)) "
is a combination of the forces and moments acting on the plate and its faces(ang is a combination of the
averaged heat source density and the temperature and heat flux on the faces.

For simplicity, suppose that

U(x,0)=0, 0wu(xz,0)=0, x€S8, (2)

which is no restriction on generality since honhomogeneous initial conditions can easily be made homogeneous
(see [8]).

We assume that the bounda?y of S is a simple, closed, piecewise smooth curve that consists of four open
arcs counted counterclockwise@s;, 7 = 1, ...,4, such that

4
8S:UT&, 9S;N0S; =0, i #3j, i,j=1,...,4.

i=1
Fori,j =1,2,3,4, we write
F:aSX(0,00), FZ:aSZX((),OO),
8Sij =05; U 637 U (TSZQTSJ), Fij = 8SU X (O, OO)
Let
u(z,t) = f(z,t), walz,t) = falz,t), (x,t) €Ty, (3)
U(l‘,t) = f($7t)a anu4($at) = g4(fE,lL), (I7t) € F27 (4)

wheren = n(x) = (n1(x),na(x),n3(z))" is the outward unit normal t8S andd,, = 9/0n.
The moment-force boundary operator [1] is

h2 [()\ + 2/1)7“81 + /J/ngag] h2(>\n182 + /LTL231) 0
T = hz(um@g + )\ngﬁl) h? [(/\ + 2#)71282 + ;mlal} 0
uny K HOn
We also assume that
Tu(xvt) —h2fyn(a:)u4(ac,t) :g(xvt)a anu4(x7t> =g4($,t), (xvt) erl;s, (5)
Tu(z,t) — h*yn(z)us(z,t) = g(o,t), us(w,t) = fa(z,t), (x,t) €Ty (6)

All f(x,t), fa(z,t), g(z,t), andgs(z, t) in (3)—(6) are given functions.

We denote bys*+ andS~— the interior and exterior domains boundedisy, respectively, and writ€* = S+ x
(0, 00). The interior and exterior initial-boundary value problems ¢M\onsist in finding/ € C*(G*)NC'(G*)
that satisfies (1) i’*, (2) in S*, and (3)—(6).

3. THE LAPLACE-TRANSFORMED PROBLEMS (TM )
Let the Laplace transform of a functisiiz, t) be

S(o.p) = (E3)(ap) = [ e Ps(at) .
0

Applying the Laplace transformation {TM*) yields elliptic boundary value problen@'Mlﬁf) that depend
on the complex parametgrand consist in finding/ € C?(S%) N C!(5%) that satisfies
p*BoU (x,p) + pBiU (z,p) + AU(z,p) = Q(a,p), =€ S5%, (7)

and

i(z,p) = f(x,p), u(z,p) = fa(z,p), = €dS,
i(w,p) = f(x,p), Opia(x,p) = ga(x,p), =€ DS,
Tu(z,p) — K2 yn(x)iy(z,p) = §(x,p), Opta(z,p) = ga(x,p), x € DSs,
Ti(w,p) — h*yn(x)is(z,p) = §(=,p), tu(z,p) = fi(z,p), =z € 0S4
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Letm € R andp € C. We introduce the following function spaces.

1/2
e H,,(R?) : the Sobolev space of functiorig(z) with norm |o||,, = {fRz(l +€12)™|94(€) dé} , where
04(&) is the Fourier transform afy ().
e H,, ,(R?) : the space of vector functiorigz) which coincides witHH,,, (R?)]® as a set but is endowed with the

~ 2 2 ~ 2 1/2
O8], = { o (1 + €12 + [pI2)™[5(6) 1 dé |
e H,,(S%), H,, ,(S%) : the spaces of the restrictions$& of all i, € H,,(R?) andd € H,, ,(R?), respectively,
with norms||iy||,,,.s+ = ir)1f 104 m @nd||d]|,, ps= = inf 19 mp-

b4€H,, (R2 :174|Si =iy vEHm‘p(RZ):f)\Si:u
o H,,(5%), H,,,(5%) : the subspaces df,, (R?) andH,, ,(R?) of all i, € H,,(R2) andd € H,, ,(R?) with
suppi, C S* and supp C S, respectively; the norms on them are those induceffiiy,, and||%||,,, ,, SO we
denote them by the same symbols.
o H_,,(S%), H_,, ,(S¥) : the duals off,, (S*), H,,,(S*) with respect to the duality generated by the inner
products inL?(S*) and [LQ(Si)]S.
o Hy/5(dS), Hys,(0S) : the spaces of the traces 08 of all u, € H1(S™) andu € Hy ,(S™), equipped with

the norm3|f4||1/2;95 = inf [[dall1;5+ and”f”l/z,p;os = inf Ml ps+-

Us€H1(St): ta|los=Ffa W€H, ,(ST):tlos=f

o H_1/5(0S), H_y/2,(0S) : the duals off{ /,(0S) and H, /5 ,(9S) with respect to the duality generated by the
inner products in.?(95) and[L?(95)]?; their norms are denoted By||_1 /2 05 and||gl|_1 2 p;05-

Let v* be the continuous (uniformly with respectjice C) trace operators fronif; (S*) to H,/5(0S) and
from Hy ,(5%) to Hys,,(95).

We denote by)S c dS any open part 0fS with mesdS > 0, and by the operator of restriction fromiS
to 0S. We list a few more necessary spaces. R
o Hi1/5(0S), Hiy1/2,(0S) : the spaces of the restrictions &6 of all the elements offf,,,(9S) and
Hayy/2,(0S), respectively, with norms|és| L, o5 = f4eHi1/2i(gg)_ﬁf4:é4 174l £1/2;05 and [[€]l ;o 08 =
ﬁeHil/Qﬂ'RfaS):M:é 7|1 /2,p;05-
o Hiy/5(8S), Hiy/o,y(0S) : the subspaces ol 5(9S) and Ha /s, (9S) consisting of all the elements

with support indS; the norms oré, € H.,,5(S) andé € Hy,5(S) may be denoted byjés| 112 05
and||é]|<1 /2 pos- We remark thatly, »(dS) are the duals ofi, 5(9S) and Ha /5, (9S) are the duals of
H=1/5,(2S) with respect to the duality generated by the inner productg{#5) and[L?(85)]?.

Letr; andm;;,4,j = 1,...,4, be the operators of restriction frofif to 95; and fromgsS to 9.5;;. Still more
spaces are defined below.

o Hi(S%,0843), H1,(S%,0534) : the subspaces df; (S*) and H; ,(S*) consisting of alliy € H;(S*) and
i € Hy ,(S%) such thatry;y* 44 = 0 androy*a = 0.

o H_1(S%,0893), H_1,(S%,0834) : the duals ofH;(S*,0S23) and H; ,(S*,0534) with respect to the
original dualities; the norms @, € H_,(S*, 8S23) andg € H_; ,,(S*, 8S34) are denoted big] 1.5+ os,, and
(9] - 1,p;5%,0854-

o Hi,(S*) = Hy,(S*) x Hi(S*), with the norm of its elements’ = (™, @)™ defined by|||U|[ p.s= =
[l pis= + lliallr;s=-

o Hi ,(ST;0834,0823) = Hy (S, 0S34) x Hi(S*,0S,3), a subspace df; ,(S*).

Letk > 0,and letC, = {p = 0 +i7 € C: o0 > «}. Below, ¢ stands for all positive constants occurring in
estimates which are independent of the functions in those estimates arel @f;, but may depend or. Also,
we denote by(-,-)o;s+, (-, -)o:os, and (-, )g.55 the inner products iiL?(S*)™, [L*(S)]™, and[L*(8S)]™,
respectively, for alln € N, and by|| - [[o.s=, || - [0;05, and|| - [[5.55 the norms on the same spaces.

Let U(x,p) = (a(z,p)T, as(z,p))T be the classical solution of either proble{r‘fM;,t), of class €(S*) N

C!(S*). We choose any function (with compact support in the cas@‘ofW(x,p) = (W(z,p)T,w4(z,p))",

W e C°(5%), such thati(z, p) = 0 for z € 9515 andiy(x,p) = 0 for 2 € 3541, and multiply (7) byW in
[L2(S*)]* to arrive at the equation

Ti,p<U’ W) = (Qa I/T/)O;Si + L(W)a (8)

Yo (U, W) = ax (@, ) + (Viig, Vida)gss+ + p*(By/ 2, BY ).+

+ 3¢ p(tig, 0a) 0.5+ — B2y (fia, divad)g.s+ + np(divi, 1a)o.s+,
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ay (i, ) :2/E(a,w) dz,

2E(ﬂ, ﬁ}) = hQEo(A, 1I)) + h2u(82121 + 81@2)(821;}1 + 81&32)
+ /L[(’lll + 81113)(1_?)1 + 81’&)3) + (ﬂg + 82@43)(7})2 + 826}3)],
Eo(ﬁ, tf}) = ()\ + 2,u) [(81111)(8152)1) + (82112)(827})2)] + )\[((917:61)(82’[})2) + ((92’112)(31&}1)},
By = diag{th,th,p}, L(W) = (g4’w4)0;3523 + (.@a w)0;8534~
Consequently, the variational problem'El\/Ipi) consist in findingl/ € H, ,(S*) that satisfies (8) for anyv €

H1p(S*;0834,05,3) and
moyTu = f, muyTis = fi

Theorem 1. For all ¢ € H_1,(S*,0S5), 4 € H_1(S*,8S23), f € His2,(0S12), fa € Hijo(dSu1),
g€ H_15,(0S34), andjy € H_1,5(0S53), p € Cy, s > 0, problems(TM:*) have unique solution& (z, p) €
Ha ,»(S*), which satisfy

U] 1Lp;sE < C{|P|[(ﬂ—1,p;si,asg4 + [C?4]—1;Si,6523 + |10|(Hf||1/2,p;as12 + ||f4||1/2,as41)

+ [Pl - 1/2,p;055: + ||§4H—1/2,8523}'

To perform our full analysis, we need to introduce a few more function spaces)d.et 85, x > 0, and
k eR.
® Hi1/2(8§)7 Hl(Si), H_l(S:t, 8534) :the Spaceﬂil/zp(ag), Hlﬁp(Si), andH_Lp(Si, 8534) Wlthp = 0,
their norms are denoted By ||, ;5.5 [ - l1;5+, @nd[- ] 1,5+ os;, -
o HE )y o (05), HEy (SF), HE, ), (S*,0834) : the spaces of all vector-functioée, p), 4(x, p), andj(z, p)
that define holomorphic mappingsz,p) : C,, — Hﬂm(ag), @(z,p) : Cx — Hy(ST), andj(x,p) : C, —
H_1(S*,08s34), and for which

(o}

||é||2il/27k,,g;8§ = sup (1 + |p‘2)k||é(l‘7p)||il/27p;8§ dr < 00,
O>K
—o0

o0

||a||?,k,n;5i = sup (1 + |p‘2)k||a(‘r7p)H%,p;si dr < o0,

o>K
—o0
o0
o kra
(6121 komi5% 055, = sup / (14 [pI*) ¥, p)) 1 s+ ag,, dT < 00
o K
—o0

o Hi1/2,k,n(a§)’ kaﬁ(Si), andHfLm(Si,aSgg) :Ehe spaces of aky(z, p), i4(x,p), andds(z, p) that
define holomorphic mappings,(z,p) : Ci. — Hy1/2(0S), @u(z,p) : Cx — Hi(S*), andgs(z,p) : C, —

H_1(S*,08,3), and for which

Hé4||j:1/2,k,n:8§ =sup [ (1+ |p|2)k||é4($7p)||il/20§ dr < oo,
! o>k ’
— 00

oo

s} g e = sup [ (1+ ) a2, p) I, g+ dr < o0,
o>K
—00

o0
[q4]31,k,n;si,8323 = S;Ip / (1+ \p|2)k[§4($7p)]31;si,8523 dr < oo.
O>K
— 00

o Hi(5%) = Hi(S%) x Hi(S%), with norms|[| U]+ = [+ + [[@a]l1:5+-
o MLy, (ST) = HE, (S*) x HE, (S*), with norms||T |1 g 152 = ]l g sz + |liia

|1,l,n;Si'

4
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Theorem 2. Letx > 0 andl € R. If
lj(x7p) € Hfl,l—‘rl,n(siv 8534); (j4(‘rap) € Hfl,l,n(sivaSQB)a
f(x,p) € H1£/2,l+1,n(8512)7 f4($7p) € H1L/2,l+1,n(8541)7
(x,p) € HE 5101 ,.(0S31),  ga(w,p) € Hf1/2,l,5(as23)7
then the(weak solutionsU (x, p) = (ii(x,p)", iia(z, p)) T of problemg TM:F) belong toH£, , , (S*) and

|||U|||1,Z,I,R;Si < {[Q) 1,141,055 0855 + [G4)—1,1,0:5% 0825 + ||f\|1/2,l+1,m8512

+ 1fall1 2,041,008 + 190 -1/2,041,0:0850 + 194l =1/2,0,550825 } -

4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We need to define one more set of functions spacesx et) andk, [ € R. By
1 -1 -1
1kn(G:‘:) leil,/{(Gi)a Hlklﬁ(Gi) :Hlﬁ,k,n(Gi) X Hﬁl,ﬁ(Gi)a
HE L (GF,Ta0), HE L (GF Tas), Hf/;z,ﬁ(rm)’
1 —1 -1
H{jpyw(Car), HE )y (Tag), HE )y, (Tas)
we denote the spaces consisting of the inverse Laplace transforms of the elements of
Hlﬁ,k,n(‘si)» Hlﬁ,l,n(‘si)v Hlkln(si) :Hlﬁ,k,n(‘si) X Hlﬁ,l,n(si)a
HE, (5%,0831), HEyy,(ST,08), Hijg, . (0512),
H1£/2,l,ﬁ,(as41)7 HEl/Z,l,m(6S34)’ H£1/2,l,n(8523)7
respectively. The norms on these spaces are defined by

= ||a4||1,l,ﬁ,;5'ia

||U||1,k,n;ci = ||ﬁ||1,k,msi>
MUkt = N0 s
) -1.1m;6% Doy = [A1,0,0:5% 08500 [04]—1,1m:6% Ty = [da)1,1,m:5% 0505
Il /2,000 = Hf||1/2,z,n;asn, | fall1 /20,0001 = ||f4||1/2,l,n;6541a
9/l =1/2.0.m:050 = 19l =1/2.0.m:0850> 194l —1/2.0.:705 = [194ll—1/2,1,4:0505-

For simplicity, we also use® to denote the trace operators frai¥ to I, andm;; to denote the operators of
restriction fromF to its partsl';;, i, 5 = 1,2, 3,4.

U e HE, 0,0, K(Gi) Ul(x,t) = (u(z,t)T, us(x,t))T, is called a weak solution ¢fTM*) if

(i) you = 0 where~y, is the trace operator off* x {t = 0};

(i) moyTu = f(x,t) and Ty yFTuy = falx,t);

(iii) U satisfies

/ Q Wogidt:l:L(W)
0

where

TL(UW) /{ai u, w) + (Vug, Vwy)o. s+ — (B 8u B, 1/2 Oyw)p, s+ — %71(U4,8tw4)0.51
— h?y(uy, divw)g, g+ — n(divu, Opwy)o, si}dt

L(W) {(ga )0;8534 + (947 w4)0;8523} dtv

forall W € CX(GF), W(z,t) = (w(z, )T, wa(z,t))", such thato(z,t) = 0 for (z,t) € T'12 andwy(x,t) =0
for (z,t) € Ty1.
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Theorem 3. LetU(z,t) = £L~'U(x, p) be the inverse Laplace transform of the weak solutigm, p) of either of
the problemgTM¥). If

q(I,t) € Hf;,l+1,H(Gi7F34)a Q4(xv t) € HE;,Z,R(Gia F23)a
_1 -1
fxt) € Hippyyy ((T12),  fa(w,t) € Hijgpyy o (Tan),

1 -1
g(z,t) € H£1/2,l+1,n(r34)a ga(z,t) € H£1/2,Z,H(F23)7
wherex > 0 andl € R, thenU € H£,,  (G*) and

{te)

1LLeGE < C{[(I]q,zﬂ,mci,r34 +laa)—1.0,06% r0s + 1 l1/2,041, 05700 + 1 fall1/2,09 1,050,

+ gl

—1/2,141,k; 034 T ||94H—1/27l,n;F23}'
If, in addition,’ > 0, thenU is a weak solution of the corresponding probléfiM*).
Theorem 4. Each of the probleméTM*) has at most one weak solution.

Full details of the proofs of Theorems 1-4 will be published elsewhere.
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